In [ ]:
import numpy as np
import matplotlib.pyplot as plt
# Data for plotting
t = np.arange(0.0, 2.0, 0.01)
s = 1 + np.sin(2 * np.pi * t)
fig, ax = plt.subplots()
ax.plot(t, s)
ax.set(xlabel='time (s)', ylabel='voltage (mV)',
title='About as simple as it gets, folks')
ax.grid()
plt.show()
In [ ]:
import numpy as np # type: ignore
import pandas as pd # type: ignore
In [ ]:
dict1 = {
"name":['Akash', 'Arka', 'Megha', 'Sahil'],
"marks":[98, 87, 38, 27],
"fav_sub":['math', 'phy', 'chemistory', 'History']
}
In [ ]:
df = pd.DataFrame(dict1)
DataFrame => like a Excel seat
In [ ]:
df
Out[ ]:
name | marks | fav_sub | |
---|---|---|---|
0 | Akash | 98 | math |
1 | Arka | 87 | phy |
2 | Megha | 38 | chemistory |
3 | Sahil | 27 | History |
In [ ]:
df.head(2) #.head() => use for to see only 2 Rows
Out[ ]:
name | marks | fav_sub | |
---|---|---|---|
0 | Akash | 98 | math |
1 | Arka | 87 | phy |
In [ ]:
df.tail(2)
Out[ ]:
name | marks | fav_sub | |
---|---|---|---|
2 | Megha | 38 | chemistory |
3 | Sahil | 27 | History |
In [ ]:
df.describe()
Out[ ]:
marks | |
---|---|
count | 4.000000 |
mean | 62.500000 |
std | 35.218366 |
min | 27.000000 |
25% | 35.250000 |
50% | 62.500000 |
75% | 89.750000 |
max | 98.000000 |
TO export as a Excel seat => to_CSV¶
In [ ]:
df.to_csv('exam.csv')
In [ ]:
df.to_csv('exam_index_false.csv', index=False)
In [ ]:
new01 = pd.read_csv('new.csv')
In [ ]:
new01
Out[ ]:
s_name | marks | fav_sub | |
---|---|---|---|
0 | Ak | 78 | math |
1 | Ar | 87 | phy |
2 | Me | 38 | chem |
3 | Sa | 27 | History |
In [ ]:
new01['fav_sub']
Out[ ]:
0 math 1 phy 2 chem 3 History Name: fav_sub, dtype: object
In [ ]:
new01['fav_sub'][3]
Out[ ]:
'History'
In [ ]:
new01['fav_sub'][3] = 'His'
C:\Users\akash\AppData\Local\Temp\ipykernel_12420\3023452953.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy new01['fav_sub'][3] = 'His'
In [ ]:
new01
Out[ ]:
s_name | marks | fav_sub | |
---|---|---|---|
0 | Ak | 78 | math |
1 | Ar | 87 | phy |
2 | Me | 38 | chem |
3 | Sa | 27 | His |
In [ ]:
new01.loc[3, 'marks'] = 7
In [ ]:
new01
Out[ ]:
s_name | marks | fav_sub | |
---|---|---|---|
0 | Ak | 78 | math |
1 | Ar | 87 | phy |
2 | Me | 38 | chem |
3 | Sa | 7 | His |
In [ ]:
new01.index = ['one', 'two', 'three', 'four']
In [ ]:
new01
Out[ ]:
s_name | marks | fav_sub | |
---|---|---|---|
one | Ak | 78 | math |
two | Ar | 87 | phy |
three | Me | 38 | chem |
four | Sa | 7 | His |
Theoretical Consepts¶
create a randome searies¶
In [ ]:
ser = pd.Series(np.random.rand(14))
In [ ]:
ser
Out[ ]:
0 0.727978 1 0.425523 2 0.539653 3 0.383829 4 0.446115 5 0.478824 6 0.573915 7 0.788179 8 0.098496 9 0.526088 10 0.697754 11 0.525282 12 0.108756 13 0.167373 dtype: float64
In [ ]:
type(ser)
Out[ ]:
pandas.core.series.Series
it says its a series, Series is a dataSteacture in Pandas(basic index).¶
create a randome DataFrame¶
In [ ]:
newdf = pd.DataFrame(np.random.rand(334,5))
In [ ]:
newdf
Out[ ]:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | 0.094915 | 0.642031 | 0.709760 | 0.221367 | 0.710656 |
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 |
3 | 0.198747 | 0.221682 | 0.267885 | 0.655873 | 0.973556 |
4 | 0.674123 | 0.938022 | 0.496734 | 0.522539 | 0.360824 |
... | ... | ... | ... | ... | ... |
329 | 0.718109 | 0.364571 | 0.523523 | 0.641379 | 0.822717 |
330 | 0.542813 | 0.583704 | 0.321597 | 0.381247 | 0.083288 |
331 | 0.294751 | 0.913405 | 0.858894 | 0.597241 | 0.223458 |
332 | 0.767770 | 0.254591 | 0.745771 | 0.949127 | 0.370670 |
333 | 0.410857 | 0.550785 | 0.608418 | 0.096930 | 0.635482 |
334 rows × 5 columns
In [ ]:
type(newdf)
Out[ ]:
pandas.core.frame.DataFrame
In [ ]:
newdf.head() #.head() => use for to see only some 1st Rows
Out[ ]:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | 0.094915 | 0.642031 | 0.709760 | 0.221367 | 0.710656 |
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 |
3 | 0.198747 | 0.221682 | 0.267885 | 0.655873 | 0.973556 |
4 | 0.674123 | 0.938022 | 0.496734 | 0.522539 | 0.360824 |
In [ ]:
newdf.describe()
Out[ ]:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
count | 334.000000 | 334.000000 | 334.000000 | 334.000000 | 334.000000 |
mean | 0.513768 | 0.468546 | 0.487145 | 0.488857 | 0.506310 |
std | 0.275904 | 0.292611 | 0.294151 | 0.295852 | 0.281235 |
min | 0.001253 | 0.000532 | 0.000390 | 0.000398 | 0.000331 |
25% | 0.288274 | 0.213710 | 0.219287 | 0.228300 | 0.269539 |
50% | 0.540356 | 0.468607 | 0.475395 | 0.478126 | 0.502517 |
75% | 0.754102 | 0.717075 | 0.747913 | 0.767165 | 0.743202 |
max | 0.998423 | 0.992619 | 0.997047 | 0.997625 | 0.996701 |
In [ ]:
newdf.dtypes
Out[ ]:
0 float64 1 float64 2 float64 3 float64 4 float64 dtype: object
Now i can change the 1st Matrix =>> float => Obj¶
In [ ]:
newdf[0][0] = "Akashdip"
C:\Users\akash\AppData\Local\Temp\ipykernel_12420\3796500939.py:1: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. A typical example is when you are setting values in a column of a DataFrame, like: df["col"][row_indexer] = value Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy newdf[0][0] = "Akashdip" C:\Users\akash\AppData\Local\Temp\ipykernel_12420\3796500939.py:1: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value 'Akashdip' has dtype incompatible with float64, please explicitly cast to a compatible dtype first. newdf[0][0] = "Akashdip"
In [ ]:
newdf.dtypes
Out[ ]:
0 object 1 float64 2 float64 3 float64 4 float64 dtype: object
In [ ]:
newdf.head() #.head() => use for to see only some 1st Rows
Out[ ]:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | Akashdip | 0.642031 | 0.709760 | 0.221367 | 0.710656 |
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 |
3 | 0.198747 | 0.221682 | 0.267885 | 0.655873 | 0.973556 |
4 | 0.674123 | 0.938022 | 0.496734 | 0.522539 | 0.360824 |
In [ ]:
newdf.index
Out[ ]:
RangeIndex(start=0, stop=334, step=1)
In [ ]:
newdf.columns
Out[ ]:
RangeIndex(start=0, stop=5, step=1)
Change the Floating no. => NumPy Array
In [ ]:
newdf.to_numpy()
Out[ ]:
array([['Akashdip', 0.6420314732051644, 0.7097602652225738, 0.22136650780922862, 0.710656025456036], [0.4031559705999236, 0.1337533469665244, 0.34517669895959047, 0.7637337782709527, 0.29940016314694406], [0.46718680306580895, 0.09424837999065083, 0.6897528475532556, 0.2501084113231712, 0.8630476945059673], ..., [0.29475112674657233, 0.9134054266812583, 0.858893929449332, 0.5972412770375036, 0.223457893816558], [0.7677704033620348, 0.25459117995897806, 0.7457713075951636, 0.9491268772733774, 0.37066994919516383], [0.4108572942041072, 0.5507852776157258, 0.6084184825250398, 0.0969295350529964, 0.6354818036266742]], dtype=object)
In [ ]:
newdf[1][0] = "Megha"
newdf[2][0] = "Vii"
C:\Users\akash\AppData\Local\Temp\ipykernel_12420\1671826079.py:1: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. A typical example is when you are setting values in a column of a DataFrame, like: df["col"][row_indexer] = value Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy newdf[1][0] = "Megha" C:\Users\akash\AppData\Local\Temp\ipykernel_12420\1671826079.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy newdf[1][0] = "Megha" C:\Users\akash\AppData\Local\Temp\ipykernel_12420\1671826079.py:1: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value 'Megha' has dtype incompatible with float64, please explicitly cast to a compatible dtype first. newdf[1][0] = "Megha" C:\Users\akash\AppData\Local\Temp\ipykernel_12420\1671826079.py:2: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. A typical example is when you are setting values in a column of a DataFrame, like: df["col"][row_indexer] = value Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy newdf[2][0] = "Vii" C:\Users\akash\AppData\Local\Temp\ipykernel_12420\1671826079.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy newdf[2][0] = "Vii" C:\Users\akash\AppData\Local\Temp\ipykernel_12420\1671826079.py:2: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value 'Vii' has dtype incompatible with float64, please explicitly cast to a compatible dtype first. newdf[2][0] = "Vii"
In [ ]:
newdf.head() #.head() => use for to see only some 1st Rows
Out[ ]:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | Akashdip | Megha | Vii | 0.221367 | 0.710656 |
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 |
3 | 0.198747 | 0.221682 | 0.267885 | 0.655873 | 0.973556 |
4 | 0.674123 | 0.938022 | 0.496734 | 0.522539 | 0.360824 |
Transpose the Matrix => [name].T¶
In [ ]:
newdfT = newdf.T
In [ ]:
newdfT
Out[ ]:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Akashdip | 0.403156 | 0.467187 | 0.198747 | 0.674123 | 0.313904 | 0.501042 | 0.085362 | 0.642413 | 0.809237 | ... | 0.143556 | 0.460996 | 0.293234 | 0.037602 | 0.100818 | 0.718109 | 0.542813 | 0.294751 | 0.76777 | 0.410857 |
1 | Megha | 0.133753 | 0.094248 | 0.221682 | 0.938022 | 0.384164 | 0.105078 | 0.734469 | 0.474613 | 0.916137 | ... | 0.19494 | 0.609987 | 0.693375 | 0.953451 | 0.365788 | 0.364571 | 0.583704 | 0.913405 | 0.254591 | 0.550785 |
2 | Vii | 0.345177 | 0.689753 | 0.267885 | 0.496734 | 0.928849 | 0.850782 | 0.456449 | 0.363067 | 0.050569 | ... | 0.45478 | 0.556856 | 0.443906 | 0.348995 | 0.148145 | 0.523523 | 0.321597 | 0.858894 | 0.745771 | 0.608418 |
3 | 0.221367 | 0.763734 | 0.250108 | 0.655873 | 0.522539 | 0.165165 | 0.616262 | 0.805086 | 0.481891 | 0.6074 | ... | 0.073695 | 0.806612 | 0.463195 | 0.007405 | 0.42351 | 0.641379 | 0.381247 | 0.597241 | 0.949127 | 0.09693 |
4 | 0.710656 | 0.2994 | 0.863048 | 0.973556 | 0.360824 | 0.105793 | 0.449298 | 0.3563 | 0.022658 | 0.611752 | ... | 0.457065 | 0.558622 | 0.423029 | 0.449113 | 0.236166 | 0.822717 | 0.083288 | 0.223458 | 0.37067 | 0.635482 |
5 rows × 334 columns
In [ ]:
newdfT.sort_index(axis=0, ascending=False)
Out[ ]:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 0.710656 | 0.2994 | 0.863048 | 0.973556 | 0.360824 | 0.105793 | 0.449298 | 0.3563 | 0.022658 | 0.611752 | ... | 0.457065 | 0.558622 | 0.423029 | 0.449113 | 0.236166 | 0.822717 | 0.083288 | 0.223458 | 0.37067 | 0.635482 |
3 | 0.221367 | 0.763734 | 0.250108 | 0.655873 | 0.522539 | 0.165165 | 0.616262 | 0.805086 | 0.481891 | 0.6074 | ... | 0.073695 | 0.806612 | 0.463195 | 0.007405 | 0.42351 | 0.641379 | 0.381247 | 0.597241 | 0.949127 | 0.09693 |
2 | Vii | 0.345177 | 0.689753 | 0.267885 | 0.496734 | 0.928849 | 0.850782 | 0.456449 | 0.363067 | 0.050569 | ... | 0.45478 | 0.556856 | 0.443906 | 0.348995 | 0.148145 | 0.523523 | 0.321597 | 0.858894 | 0.745771 | 0.608418 |
1 | Megha | 0.133753 | 0.094248 | 0.221682 | 0.938022 | 0.384164 | 0.105078 | 0.734469 | 0.474613 | 0.916137 | ... | 0.19494 | 0.609987 | 0.693375 | 0.953451 | 0.365788 | 0.364571 | 0.583704 | 0.913405 | 0.254591 | 0.550785 |
0 | Akashdip | 0.403156 | 0.467187 | 0.198747 | 0.674123 | 0.313904 | 0.501042 | 0.085362 | 0.642413 | 0.809237 | ... | 0.143556 | 0.460996 | 0.293234 | 0.037602 | 0.100818 | 0.718109 | 0.542813 | 0.294751 | 0.76777 | 0.410857 |
5 rows × 334 columns
In [ ]:
newdf.sort_index(axis=0, ascending=False)
Out[ ]:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
333 | 0.410857 | 0.550785 | 0.608418 | 0.096930 | 0.635482 |
332 | 0.76777 | 0.254591 | 0.745771 | 0.949127 | 0.370670 |
331 | 0.294751 | 0.913405 | 0.858894 | 0.597241 | 0.223458 |
330 | 0.542813 | 0.583704 | 0.321597 | 0.381247 | 0.083288 |
329 | 0.718109 | 0.364571 | 0.523523 | 0.641379 | 0.822717 |
... | ... | ... | ... | ... | ... |
4 | 0.674123 | 0.938022 | 0.496734 | 0.522539 | 0.360824 |
3 | 0.198747 | 0.221682 | 0.267885 | 0.655873 | 0.973556 |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 |
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 |
0 | Akashdip | Megha | Vii | 0.221367 | 0.710656 |
334 rows × 5 columns
In [ ]:
newdf.sort_index(axis=1, ascending=False)
Out[ ]:
4 | 3 | 2 | 1 | 0 | |
---|---|---|---|---|---|
0 | 0.710656 | 0.221367 | Vii | Megha | Akashdip |
1 | 0.299400 | 0.763734 | 0.345177 | 0.133753 | 0.403156 |
2 | 0.863048 | 0.250108 | 0.689753 | 0.094248 | 0.467187 |
3 | 0.973556 | 0.655873 | 0.267885 | 0.221682 | 0.198747 |
4 | 0.360824 | 0.522539 | 0.496734 | 0.938022 | 0.674123 |
... | ... | ... | ... | ... | ... |
329 | 0.822717 | 0.641379 | 0.523523 | 0.364571 | 0.718109 |
330 | 0.083288 | 0.381247 | 0.321597 | 0.583704 | 0.542813 |
331 | 0.223458 | 0.597241 | 0.858894 | 0.913405 | 0.294751 |
332 | 0.370670 | 0.949127 | 0.745771 | 0.254591 | 0.76777 |
333 | 0.635482 | 0.096930 | 0.608418 | 0.550785 | 0.410857 |
334 rows × 5 columns
In [ ]:
newdf[0]
Out[ ]:
0 Akashdip 1 0.403156 2 0.467187 3 0.198747 4 0.674123 ... 329 0.718109 330 0.542813 331 0.294751 332 0.76777 333 0.410857 Name: 0, Length: 334, dtype: object
In [ ]:
type(newdf[0])
Out[ ]:
pandas.core.series.Series
it's a Series ⬆️¶
every Row is a Series => 1D array of index
In [ ]:
newdf.head() #.head() => use for to see only some 1st Rows
Out[ ]:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | Akashdip | Megha | Vii | 0.221367 | 0.710656 |
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 |
3 | 0.198747 | 0.221682 | 0.267885 | 0.655873 | 0.973556 |
4 | 0.674123 | 0.938022 | 0.496734 | 0.522539 | 0.360824 |
In [ ]:
newdf_2 = newdf.copy()
In [ ]:
newdf_2.head() #.head() => use for to see only some 1st Rows
Out[ ]:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | Akashdip | Megha | Vii | 0.221367 | 0.710656 |
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 |
3 | 0.198747 | 0.221682 | 0.267885 | 0.655873 | 0.973556 |
4 | 0.674123 | 0.938022 | 0.496734 | 0.522539 | 0.360824 |
In [ ]:
newdf_2[0][0] = 0.0001
C:\Users\akash\AppData\Local\Temp\ipykernel_12420\1230259220.py:1: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. A typical example is when you are setting values in a column of a DataFrame, like: df["col"][row_indexer] = value Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy newdf_2[0][0] = 0.0001 C:\Users\akash\AppData\Local\Temp\ipykernel_12420\1230259220.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy newdf_2[0][0] = 0.0001
In [ ]:
newdf_2.head() #.head() => use for to see only some 1st Rows
Out[ ]:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | 0.0001 | Megha | Vii | 0.221367 | 0.710656 |
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 |
3 | 0.198747 | 0.221682 | 0.267885 | 0.655873 | 0.973556 |
4 | 0.674123 | 0.938022 | 0.496734 | 0.522539 | 0.360824 |
In [ ]:
newdf.head() #.head() => use for to see only some 1st Rows
Out[ ]:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | Akashdip | Megha | Vii | 0.221367 | 0.710656 |
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 |
3 | 0.198747 | 0.221682 | 0.267885 | 0.655873 | 0.973556 |
4 | 0.674123 | 0.938022 | 0.496734 | 0.522539 | 0.360824 |
so, 1st I COPY newdf => newdf_2 , Then I change a value , But it's not effect on Iriginal file.
In [ ]:
newdf_2.head() #.head() => use for to see only some 1st Rows
Out[ ]:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | 0.0001 | Megha | Vii | 0.221367 | 0.710656 |
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 |
3 | 0.198747 | 0.221682 | 0.267885 | 0.655873 | 0.973556 |
4 | 0.674123 | 0.938022 | 0.496734 | 0.522539 | 0.360824 |
In [ ]:
newdf_2.loc[0,0] = 999
In [ ]:
newdf_2.head() #.head() => use for to see only some 1st Rows
Out[ ]:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | 999 | Megha | Vii | 0.221367 | 0.710656 |
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 |
3 | 0.198747 | 0.221682 | 0.267885 | 0.655873 | 0.973556 |
4 | 0.674123 | 0.938022 | 0.496734 | 0.522539 | 0.360824 |
In [ ]:
newdf_2.columns = list("ABCDE")
In [ ]:
newdf_2.head() #.head() => use for to see only some 1st Rows
Out[ ]:
A | B | C | D | E | |
---|---|---|---|---|---|
0 | 999 | Megha | Vii | 0.221367 | 0.710656 |
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 |
3 | 0.198747 | 0.221682 | 0.267885 | 0.655873 | 0.973556 |
4 | 0.674123 | 0.938022 | 0.496734 | 0.522539 | 0.360824 |
In [ ]:
newdf_2.loc[0,'A'] = 888
In [ ]:
newdf_2.head() #.head() => use for to see only some 1st Rows
Out[ ]:
A | B | C | D | E | |
---|---|---|---|---|---|
0 | 888 | Megha | Vii | 0.221367 | 0.710656 |
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 |
3 | 0.198747 | 0.221682 | 0.267885 | 0.655873 | 0.973556 |
4 | 0.674123 | 0.938022 | 0.496734 | 0.522539 | 0.360824 |
But¶
In [ ]:
newdf_2.loc[0,0] = 888
In [ ]:
newdf_2.head() #.head() => use for to see only some 1st Rows
Out[ ]:
A | B | C | D | E | 0 | |
---|---|---|---|---|---|---|
0 | 888 | Megha | Vii | 0.221367 | 0.710656 | 888.0 |
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 | NaN |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 | NaN |
3 | 0.198747 | 0.221682 | 0.267885 | 0.655873 | 0.973556 | NaN |
4 | 0.674123 | 0.938022 | 0.496734 | 0.522539 | 0.360824 | NaN |
In [ ]:
newdf_2.drop(0, axis=1)
Out[ ]:
A | B | C | D | E | |
---|---|---|---|---|---|
0 | 888 | Megha | Vii | 0.221367 | 0.710656 |
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 |
3 | 0.198747 | 0.221682 | 0.267885 | 0.655873 | 0.973556 |
4 | 0.674123 | 0.938022 | 0.496734 | 0.522539 | 0.360824 |
... | ... | ... | ... | ... | ... |
329 | 0.718109 | 0.364571 | 0.523523 | 0.641379 | 0.822717 |
330 | 0.542813 | 0.583704 | 0.321597 | 0.381247 | 0.083288 |
331 | 0.294751 | 0.913405 | 0.858894 | 0.597241 | 0.223458 |
332 | 0.76777 | 0.254591 | 0.745771 | 0.949127 | 0.370670 |
333 | 0.410857 | 0.550785 | 0.608418 | 0.096930 | 0.635482 |
334 rows × 5 columns
In [ ]:
newdf_2.loc[[1,2], ['C', 'D']]
Out[ ]:
C | D | |
---|---|---|
1 | 0.345177 | 0.763734 |
2 | 0.689753 | 0.250108 |
For All Row¶
In [ ]:
newdf_2.loc[:, ['C', 'D']]
Out[ ]:
C | D | |
---|---|---|
0 | Vii | 0.221367 |
1 | 0.345177 | 0.763734 |
2 | 0.689753 | 0.250108 |
3 | 0.267885 | 0.655873 |
4 | 0.496734 | 0.522539 |
... | ... | ... |
329 | 0.523523 | 0.641379 |
330 | 0.321597 | 0.381247 |
331 | 0.858894 | 0.597241 |
332 | 0.745771 | 0.949127 |
333 | 0.608418 | 0.096930 |
334 rows × 2 columns
All Columns¶
In [ ]:
newdf_2.loc[[1,2], :]
Out[ ]:
A | B | C | D | E | 0 | |
---|---|---|---|---|---|---|
1 | 0.403156 | 0.133753 | 0.345177 | 0.763734 | 0.299400 | NaN |
2 | 0.467187 | 0.094248 | 0.689753 | 0.250108 | 0.863048 | NaN |
Find Row, which have < 0.3 values¶
In [ ]:
newdf88 = pd.DataFrame(np.random.rand(30,5))
newdf88.columns = list("ABCDE")
newdf88
Out[ ]:
A | B | C | D | E | |
---|---|---|---|---|---|
0 | 0.281601 | 0.381453 | 0.682943 | 0.561370 | 0.565630 |
1 | 0.747436 | 0.248261 | 0.149104 | 0.326140 | 0.638349 |
2 | 0.711883 | 0.817792 | 0.893393 | 0.131012 | 0.011234 |
3 | 0.690050 | 0.217207 | 0.072389 | 0.007611 | 0.873336 |
4 | 0.881278 | 0.522446 | 0.145804 | 0.110494 | 0.284493 |
5 | 0.237359 | 0.725402 | 0.877323 | 0.895825 | 0.919854 |
6 | 0.545712 | 0.715389 | 0.213039 | 0.904846 | 0.935825 |
7 | 0.331696 | 0.045595 | 0.494815 | 0.394165 | 0.891205 |
8 | 0.342224 | 0.473011 | 0.576432 | 0.326216 | 0.390410 |
9 | 0.640362 | 0.289781 | 0.341323 | 0.891514 | 0.717012 |
10 | 0.552238 | 0.728340 | 0.286339 | 0.012671 | 0.464955 |
11 | 0.426008 | 0.759918 | 0.678907 | 0.580389 | 0.737262 |
12 | 0.221629 | 0.678070 | 0.814349 | 0.748124 | 0.333247 |
13 | 0.180518 | 0.801238 | 0.508825 | 0.255169 | 0.266111 |
14 | 0.590870 | 0.182144 | 0.248982 | 0.985712 | 0.619627 |
15 | 0.605472 | 0.922776 | 0.446200 | 0.794544 | 0.555656 |
16 | 0.196671 | 0.957782 | 0.193746 | 0.310691 | 0.867964 |
17 | 0.625365 | 0.754752 | 0.202185 | 0.677774 | 0.768727 |
18 | 0.933003 | 0.299684 | 0.867389 | 0.960339 | 0.410006 |
19 | 0.041841 | 0.248839 | 0.569793 | 0.879107 | 0.836096 |
20 | 0.134533 | 0.467836 | 0.733566 | 0.987148 | 0.326727 |
21 | 0.360502 | 0.290221 | 0.304575 | 0.246893 | 0.938708 |
22 | 0.079849 | 0.039028 | 0.363027 | 0.762271 | 0.264923 |
23 | 0.964659 | 0.529230 | 0.930264 | 0.580089 | 0.549645 |
24 | 0.318614 | 0.767586 | 0.390680 | 0.812308 | 0.923355 |
25 | 0.928536 | 0.571438 | 0.075288 | 0.969695 | 0.084284 |
26 | 0.301159 | 0.029311 | 0.908624 | 0.521737 | 0.008922 |
27 | 0.756558 | 0.046806 | 0.870727 | 0.587439 | 0.665298 |
28 | 0.674713 | 0.055849 | 0.672791 | 0.986618 | 0.442269 |
29 | 0.078427 | 0.168581 | 0.431960 | 0.566728 | 0.279052 |
In [ ]:
newdf88.loc[(newdf88['A']<0.3)]
Out[ ]:
A | B | C | D | E | |
---|---|---|---|---|---|
0 | 0.281601 | 0.381453 | 0.682943 | 0.561370 | 0.565630 |
5 | 0.237359 | 0.725402 | 0.877323 | 0.895825 | 0.919854 |
12 | 0.221629 | 0.678070 | 0.814349 | 0.748124 | 0.333247 |
13 | 0.180518 | 0.801238 | 0.508825 | 0.255169 | 0.266111 |
16 | 0.196671 | 0.957782 | 0.193746 | 0.310691 | 0.867964 |
19 | 0.041841 | 0.248839 | 0.569793 | 0.879107 | 0.836096 |
20 | 0.134533 | 0.467836 | 0.733566 | 0.987148 | 0.326727 |
22 | 0.079849 | 0.039028 | 0.363027 | 0.762271 | 0.264923 |
29 | 0.078427 | 0.168581 | 0.431960 | 0.566728 | 0.279052 |
In [ ]:
newdf88.loc[(newdf88['A']<0.3) & (newdf88['C']>0.5)]
Out[ ]:
A | B | C | D | E | |
---|---|---|---|---|---|
0 | 0.281601 | 0.381453 | 0.682943 | 0.561370 | 0.565630 |
5 | 0.237359 | 0.725402 | 0.877323 | 0.895825 | 0.919854 |
12 | 0.221629 | 0.678070 | 0.814349 | 0.748124 | 0.333247 |
13 | 0.180518 | 0.801238 | 0.508825 | 0.255169 | 0.266111 |
19 | 0.041841 | 0.248839 | 0.569793 | 0.879107 | 0.836096 |
20 | 0.134533 | 0.467836 | 0.733566 | 0.987148 | 0.326727 |
In [ ]:
newdf88.head(2) #.head() => use for to see only 2 Rows
Out[ ]:
A | B | C | D | E | |
---|---|---|---|---|---|
0 | 0.281601 | 0.381453 | 0.682943 | 0.56137 | 0.565630 |
1 | 0.747436 | 0.248261 | 0.149104 | 0.32614 | 0.638349 |
Find Value¶
In [ ]:
newdf88.iloc[0,4]
Out[ ]:
np.float64(0.5656303065830017)
In [ ]:
newdf88.iloc[[0,5], [1,2]]
Out[ ]:
B | C | |
---|---|---|
0 | 0.381453 | 0.682943 |
5 | 0.725402 | 0.877323 |
In [ ]:
newdf88.head() #.head() => use for to see only some 1st Rows
Out[ ]:
A | B | C | D | E | |
---|---|---|---|---|---|
0 | 0.281601 | 0.381453 | 0.682943 | 0.561370 | 0.565630 |
1 | 0.747436 | 0.248261 | 0.149104 | 0.326140 | 0.638349 |
2 | 0.711883 | 0.817792 | 0.893393 | 0.131012 | 0.011234 |
3 | 0.690050 | 0.217207 | 0.072389 | 0.007611 | 0.873336 |
4 | 0.881278 | 0.522446 | 0.145804 | 0.110494 | 0.284493 |
Remove 1st one, using []¶
In [ ]:
newdf88.drop([0])
Out[ ]:
A | B | C | D | E | |
---|---|---|---|---|---|
1 | 0.747436 | 0.248261 | 0.149104 | 0.326140 | 0.638349 |
2 | 0.711883 | 0.817792 | 0.893393 | 0.131012 | 0.011234 |
3 | 0.690050 | 0.217207 | 0.072389 | 0.007611 | 0.873336 |
4 | 0.881278 | 0.522446 | 0.145804 | 0.110494 | 0.284493 |
5 | 0.237359 | 0.725402 | 0.877323 | 0.895825 | 0.919854 |
6 | 0.545712 | 0.715389 | 0.213039 | 0.904846 | 0.935825 |
7 | 0.331696 | 0.045595 | 0.494815 | 0.394165 | 0.891205 |
8 | 0.342224 | 0.473011 | 0.576432 | 0.326216 | 0.390410 |
9 | 0.640362 | 0.289781 | 0.341323 | 0.891514 | 0.717012 |
10 | 0.552238 | 0.728340 | 0.286339 | 0.012671 | 0.464955 |
11 | 0.426008 | 0.759918 | 0.678907 | 0.580389 | 0.737262 |
12 | 0.221629 | 0.678070 | 0.814349 | 0.748124 | 0.333247 |
13 | 0.180518 | 0.801238 | 0.508825 | 0.255169 | 0.266111 |
14 | 0.590870 | 0.182144 | 0.248982 | 0.985712 | 0.619627 |
15 | 0.605472 | 0.922776 | 0.446200 | 0.794544 | 0.555656 |
16 | 0.196671 | 0.957782 | 0.193746 | 0.310691 | 0.867964 |
17 | 0.625365 | 0.754752 | 0.202185 | 0.677774 | 0.768727 |
18 | 0.933003 | 0.299684 | 0.867389 | 0.960339 | 0.410006 |
19 | 0.041841 | 0.248839 | 0.569793 | 0.879107 | 0.836096 |
20 | 0.134533 | 0.467836 | 0.733566 | 0.987148 | 0.326727 |
21 | 0.360502 | 0.290221 | 0.304575 | 0.246893 | 0.938708 |
22 | 0.079849 | 0.039028 | 0.363027 | 0.762271 | 0.264923 |
23 | 0.964659 | 0.529230 | 0.930264 | 0.580089 | 0.549645 |
24 | 0.318614 | 0.767586 | 0.390680 | 0.812308 | 0.923355 |
25 | 0.928536 | 0.571438 | 0.075288 | 0.969695 | 0.084284 |
26 | 0.301159 | 0.029311 | 0.908624 | 0.521737 | 0.008922 |
27 | 0.756558 | 0.046806 | 0.870727 | 0.587439 | 0.665298 |
28 | 0.674713 | 0.055849 | 0.672791 | 0.986618 | 0.442269 |
29 | 0.078427 | 0.168581 | 0.431960 | 0.566728 | 0.279052 |
In [ ]:
newdf88.drop(['A', 'C'], axis=1)
Out[ ]:
B | D | E | |
---|---|---|---|
0 | 0.381453 | 0.561370 | 0.565630 |
1 | 0.248261 | 0.326140 | 0.638349 |
2 | 0.817792 | 0.131012 | 0.011234 |
3 | 0.217207 | 0.007611 | 0.873336 |
4 | 0.522446 | 0.110494 | 0.284493 |
5 | 0.725402 | 0.895825 | 0.919854 |
6 | 0.715389 | 0.904846 | 0.935825 |
7 | 0.045595 | 0.394165 | 0.891205 |
8 | 0.473011 | 0.326216 | 0.390410 |
9 | 0.289781 | 0.891514 | 0.717012 |
10 | 0.728340 | 0.012671 | 0.464955 |
11 | 0.759918 | 0.580389 | 0.737262 |
12 | 0.678070 | 0.748124 | 0.333247 |
13 | 0.801238 | 0.255169 | 0.266111 |
14 | 0.182144 | 0.985712 | 0.619627 |
15 | 0.922776 | 0.794544 | 0.555656 |
16 | 0.957782 | 0.310691 | 0.867964 |
17 | 0.754752 | 0.677774 | 0.768727 |
18 | 0.299684 | 0.960339 | 0.410006 |
19 | 0.248839 | 0.879107 | 0.836096 |
20 | 0.467836 | 0.987148 | 0.326727 |
21 | 0.290221 | 0.246893 | 0.938708 |
22 | 0.039028 | 0.762271 | 0.264923 |
23 | 0.529230 | 0.580089 | 0.549645 |
24 | 0.767586 | 0.812308 | 0.923355 |
25 | 0.571438 | 0.969695 | 0.084284 |
26 | 0.029311 | 0.521737 | 0.008922 |
27 | 0.046806 | 0.587439 | 0.665298 |
28 | 0.055849 | 0.986618 | 0.442269 |
29 | 0.168581 | 0.566728 | 0.279052 |
In [ ]:
newdf88.drop([1, 3, 5], axis=0)
Out[ ]:
A | B | C | D | E | |
---|---|---|---|---|---|
0 | 0.281601 | 0.381453 | 0.682943 | 0.561370 | 0.565630 |
2 | 0.711883 | 0.817792 | 0.893393 | 0.131012 | 0.011234 |
4 | 0.881278 | 0.522446 | 0.145804 | 0.110494 | 0.284493 |
6 | 0.545712 | 0.715389 | 0.213039 | 0.904846 | 0.935825 |
7 | 0.331696 | 0.045595 | 0.494815 | 0.394165 | 0.891205 |
8 | 0.342224 | 0.473011 | 0.576432 | 0.326216 | 0.390410 |
9 | 0.640362 | 0.289781 | 0.341323 | 0.891514 | 0.717012 |
10 | 0.552238 | 0.728340 | 0.286339 | 0.012671 | 0.464955 |
11 | 0.426008 | 0.759918 | 0.678907 | 0.580389 | 0.737262 |
12 | 0.221629 | 0.678070 | 0.814349 | 0.748124 | 0.333247 |
13 | 0.180518 | 0.801238 | 0.508825 | 0.255169 | 0.266111 |
14 | 0.590870 | 0.182144 | 0.248982 | 0.985712 | 0.619627 |
15 | 0.605472 | 0.922776 | 0.446200 | 0.794544 | 0.555656 |
16 | 0.196671 | 0.957782 | 0.193746 | 0.310691 | 0.867964 |
17 | 0.625365 | 0.754752 | 0.202185 | 0.677774 | 0.768727 |
18 | 0.933003 | 0.299684 | 0.867389 | 0.960339 | 0.410006 |
19 | 0.041841 | 0.248839 | 0.569793 | 0.879107 | 0.836096 |
20 | 0.134533 | 0.467836 | 0.733566 | 0.987148 | 0.326727 |
21 | 0.360502 | 0.290221 | 0.304575 | 0.246893 | 0.938708 |
22 | 0.079849 | 0.039028 | 0.363027 | 0.762271 | 0.264923 |
23 | 0.964659 | 0.529230 | 0.930264 | 0.580089 | 0.549645 |
24 | 0.318614 | 0.767586 | 0.390680 | 0.812308 | 0.923355 |
25 | 0.928536 | 0.571438 | 0.075288 | 0.969695 | 0.084284 |
26 | 0.301159 | 0.029311 | 0.908624 | 0.521737 | 0.008922 |
27 | 0.756558 | 0.046806 | 0.870727 | 0.587439 | 0.665298 |
28 | 0.674713 | 0.055849 | 0.672791 | 0.986618 | 0.442269 |
29 | 0.078427 | 0.168581 | 0.431960 | 0.566728 | 0.279052 |
Parmanant Change of dataFrame¶
In [ ]:
newdf88.drop([1, 3, 5], axis=0, inplace=True)
In [ ]:
newdf88.head() #.head() => use for to see only some 1st Rows
Out[ ]:
A | B | C | D | E | |
---|---|---|---|---|---|
0 | 0.281601 | 0.381453 | 0.682943 | 0.561370 | 0.565630 |
2 | 0.711883 | 0.817792 | 0.893393 | 0.131012 | 0.011234 |
4 | 0.881278 | 0.522446 | 0.145804 | 0.110494 | 0.284493 |
6 | 0.545712 | 0.715389 | 0.213039 | 0.904846 | 0.935825 |
7 | 0.331696 | 0.045595 | 0.494815 | 0.394165 | 0.891205 |
ReArrange the No. 1,2,3,4,5,....¶
In [ ]:
newdf88.reset_index()
Out[ ]:
index | A | B | C | D | E | |
---|---|---|---|---|---|---|
0 | 0 | 0.281601 | 0.381453 | 0.682943 | 0.561370 | 0.565630 |
1 | 2 | 0.711883 | 0.817792 | 0.893393 | 0.131012 | 0.011234 |
2 | 4 | 0.881278 | 0.522446 | 0.145804 | 0.110494 | 0.284493 |
3 | 6 | 0.545712 | 0.715389 | 0.213039 | 0.904846 | 0.935825 |
4 | 7 | 0.331696 | 0.045595 | 0.494815 | 0.394165 | 0.891205 |
5 | 8 | 0.342224 | 0.473011 | 0.576432 | 0.326216 | 0.390410 |
6 | 9 | 0.640362 | 0.289781 | 0.341323 | 0.891514 | 0.717012 |
7 | 10 | 0.552238 | 0.728340 | 0.286339 | 0.012671 | 0.464955 |
8 | 11 | 0.426008 | 0.759918 | 0.678907 | 0.580389 | 0.737262 |
9 | 12 | 0.221629 | 0.678070 | 0.814349 | 0.748124 | 0.333247 |
10 | 13 | 0.180518 | 0.801238 | 0.508825 | 0.255169 | 0.266111 |
11 | 14 | 0.590870 | 0.182144 | 0.248982 | 0.985712 | 0.619627 |
12 | 15 | 0.605472 | 0.922776 | 0.446200 | 0.794544 | 0.555656 |
13 | 16 | 0.196671 | 0.957782 | 0.193746 | 0.310691 | 0.867964 |
14 | 17 | 0.625365 | 0.754752 | 0.202185 | 0.677774 | 0.768727 |
15 | 18 | 0.933003 | 0.299684 | 0.867389 | 0.960339 | 0.410006 |
16 | 19 | 0.041841 | 0.248839 | 0.569793 | 0.879107 | 0.836096 |
17 | 20 | 0.134533 | 0.467836 | 0.733566 | 0.987148 | 0.326727 |
18 | 21 | 0.360502 | 0.290221 | 0.304575 | 0.246893 | 0.938708 |
19 | 22 | 0.079849 | 0.039028 | 0.363027 | 0.762271 | 0.264923 |
20 | 23 | 0.964659 | 0.529230 | 0.930264 | 0.580089 | 0.549645 |
21 | 24 | 0.318614 | 0.767586 | 0.390680 | 0.812308 | 0.923355 |
22 | 25 | 0.928536 | 0.571438 | 0.075288 | 0.969695 | 0.084284 |
23 | 26 | 0.301159 | 0.029311 | 0.908624 | 0.521737 | 0.008922 |
24 | 27 | 0.756558 | 0.046806 | 0.870727 | 0.587439 | 0.665298 |
25 | 28 | 0.674713 | 0.055849 | 0.672791 | 0.986618 | 0.442269 |
26 | 29 | 0.078427 | 0.168581 | 0.431960 | 0.566728 | 0.279052 |
In [ ]:
newdf88.reset_index(drop=True) # drop=True => Remove the Old index Column
Out[ ]:
A | B | C | D | E | |
---|---|---|---|---|---|
0 | 0.281601 | 0.381453 | 0.682943 | 0.561370 | 0.565630 |
1 | 0.711883 | 0.817792 | 0.893393 | 0.131012 | 0.011234 |
2 | 0.881278 | 0.522446 | 0.145804 | 0.110494 | 0.284493 |
3 | 0.545712 | 0.715389 | 0.213039 | 0.904846 | 0.935825 |
4 | 0.331696 | 0.045595 | 0.494815 | 0.394165 | 0.891205 |
5 | 0.342224 | 0.473011 | 0.576432 | 0.326216 | 0.390410 |
6 | 0.640362 | 0.289781 | 0.341323 | 0.891514 | 0.717012 |
7 | 0.552238 | 0.728340 | 0.286339 | 0.012671 | 0.464955 |
8 | 0.426008 | 0.759918 | 0.678907 | 0.580389 | 0.737262 |
9 | 0.221629 | 0.678070 | 0.814349 | 0.748124 | 0.333247 |
10 | 0.180518 | 0.801238 | 0.508825 | 0.255169 | 0.266111 |
11 | 0.590870 | 0.182144 | 0.248982 | 0.985712 | 0.619627 |
12 | 0.605472 | 0.922776 | 0.446200 | 0.794544 | 0.555656 |
13 | 0.196671 | 0.957782 | 0.193746 | 0.310691 | 0.867964 |
14 | 0.625365 | 0.754752 | 0.202185 | 0.677774 | 0.768727 |
15 | 0.933003 | 0.299684 | 0.867389 | 0.960339 | 0.410006 |
16 | 0.041841 | 0.248839 | 0.569793 | 0.879107 | 0.836096 |
17 | 0.134533 | 0.467836 | 0.733566 | 0.987148 | 0.326727 |
18 | 0.360502 | 0.290221 | 0.304575 | 0.246893 | 0.938708 |
19 | 0.079849 | 0.039028 | 0.363027 | 0.762271 | 0.264923 |
20 | 0.964659 | 0.529230 | 0.930264 | 0.580089 | 0.549645 |
21 | 0.318614 | 0.767586 | 0.390680 | 0.812308 | 0.923355 |
22 | 0.928536 | 0.571438 | 0.075288 | 0.969695 | 0.084284 |
23 | 0.301159 | 0.029311 | 0.908624 | 0.521737 | 0.008922 |
24 | 0.756558 | 0.046806 | 0.870727 | 0.587439 | 0.665298 |
25 | 0.674713 | 0.055849 | 0.672791 | 0.986618 | 0.442269 |
26 | 0.078427 | 0.168581 | 0.431960 | 0.566728 | 0.279052 |
In [ ]:
newdf88.reset_index(drop=True, inplace=True) # Permanent Change
newdf88.head() #.head() => use for to see only some 1st Row
Out[ ]:
A | B | C | D | E | |
---|---|---|---|---|---|
0 | 0.281601 | 0.381453 | 0.682943 | 0.561370 | 0.565630 |
1 | 0.711883 | 0.817792 | 0.893393 | 0.131012 | 0.011234 |
2 | 0.881278 | 0.522446 | 0.145804 | 0.110494 | 0.284493 |
3 | 0.545712 | 0.715389 | 0.213039 | 0.904846 | 0.935825 |
4 | 0.331696 | 0.045595 | 0.494815 | 0.394165 | 0.891205 |